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Abstract 

As an illustrative application of the general theory of 
quasicrystallographic space groups a non-symmor- 
phic aperiodic tiling is constructed with space group 
p2Jgm using a generalization of the grid method. 

I. Introduction 

The discovery of alloys called 'quasicrystals' 
(Schechtman, Blech, Gratias & Cahn, 1984; Levine 
& Steinhardt, 1984) with diffraction patterns contain- 
ing sharp Bragg-like peaks with non-crystallographic 
point-group symmetries has stimulated a reexamin- 
ation of the basic crystallographic concepts of lattice 
and space group. 

If the lattice is defined in Fourier space to be the 
smallest set of wave vectors k, closed under addition 
and subtraction, that contains all wave vectors in the 
diffraction pattern, then there is no reason to require 
a minimum separation between lattice vectors. Since 
the proof that lattice point groups can only have two-, 
three-, four- or sixfold axes requires a minimum 
separation, such lattices can have arbitrary point- 
group symmetries. Of course a lattice with a non- 
crystallographic point group will not be dual to a 
lattice of translations describing the real-space trans- 
lational symmetry of the material producing the 
diffraction pattern. Such materials have lattices only 
in Fourier space, unless one chooses to view them as 
real-space projections of higher-dimensional periodic 
structures. 

Materials characterized by a Fourier space lattice 
with point-group symmetry G can be further classified 
by the phase relations between density Fourier 
coefficients p(k) at symmetry-related points. These 
relations fall into certain equivalence classes, 
described more fully below, which in the crystallo- 
graphic case correspond precisely to the ordinary 
space groups, and which define the concept of a space 
group in the non-crystallographic case. 
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Such an analysis of the two-dimensional quasicrys- 
tallographic space groups has been given by Rokhsar, 
Wright & Mermin (RWM) (1988) for 'standard lat- 
tices'. The standard two-dimensional lattice with N- 
fold rotational symmetry is the set of all integral linear 
combinations of N wave vectors of equal length 
separated by angles of 27r/N. Mermin, Rokhsar & 
Wright (1987) have shown that all two-dimensional 
lattices are standard when N < 46, but for larger N 
non-standard lattices abound. (Although there is only 
one class of 4-, 8-, 16-, and 32-lattices, there are, for 
example, 17 distinct 64-lattices and 359 057 distinct 
128-lattices, where 'distinct' means differing by more 
than just a rotation and/or  rescaling.) 

The two-dimensional space groups belonging to 
standard lattices with N-fold symmetry are very 
simple when N is not a power of 2: all phase relations 
belong to the same class as the trivial one that assigns 
identical phases to Fourier coefficients at symmetry- 
related points. In the crystallographic case such space 
groups are called 'symmorphic', and it is natural to 
extend this nomenclature to the non-crystallographic 
case. 

When N is a power of 2, however, the standard 
lattice can also have a non-symmorphic space group, 
characterized by non-trivial phase relations, which 
require systematic extinctions-the vanishing of 
Fourier coefficients at certain wave vectors. When the 
point group is 2Jmm, RWM call the symmorphic and 
non.symmorphic quasicrystallographic space groups 
p2Jmm and p2Jgm. This reduces to the standard 
crystallographic notation when j = 2. 

In their paper RWM display patterns with p8mm 
and p8gm symmetry, constructed by taking linear 
combinations of a small number of plane waves with 
the appropriate phase relations. In constructing 
models of real materials, however, one exploits 
examples of the space groups that consist of sets of 
real-space points with a minimum distance between 
them. This is commonly done by taking the points to 
be the vertices of an aperiodic tiling of the appropriate 
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point-group symmetry or, often equivalently, to be 
the projection into physical space of a slice of a 
higher-dimensional periodic array. 

Such methods for constructing tilings with p2Jmm 
symmetry are well known, and many examples can 
be found in the literature (e.g. de Bruijn, 1981; 
Duneau & Katz, 1985; G~hler & Rhyner, 1986; Elser, 
1986). We describe here a method for constructing 
tilings with the non-symmorphic p2Jgm space-group 
symmetry. The fruits of this procedure are displayed 
in Fig. 1, which shows tilings with the symmorphic 
space group p8mm and the non-symmorphic space 
group p8gm. For comparison Fig. 2 shows the peri- 
odic p4mm and p4grn tilings that result when the 
same procedure is applied to the crystallographic 
case. Readers content with perusing pictures are 
invited to enjoy Fig. 1 (b), hunt for evidence of 'quasi- 
glide lines', and turn to more pressing matters. For 
readers interested in the process of construction, the 
rest of the paper is organized as follows: In § II we 
describe the new algorithm that gives the p2Jgm tilings 
(together with the familiar algorithm giving the sym- 
morphic p2Jmm tilings). In § III we summarize the 
definitions and results of RWM that we need to 
specify the conditions for a tiling to have the non- 
symmorphic space group p2Jgm. In § IV we give a 
simple formulation of the relation between tilings and 
projections from higher dimensions, which some 
readers might find of interest in itself. In § V we apply 
the formulation of § IV to a proof that the Fourier 
coefficients of a sum of 8 functions at the vertices of 
the tilings described in § II do indeed have the phase 
relations described in § III. 

II. Tilings with p2Jgm symmetry 

First we describe the conventional grid method (de 
Bruijn, 1981; Socolar, Steinhardt & Levine, 1985; 
G~ihler & Rhyner, 1986) for constructing a tiling with 
2J-fold symmetry and the symmorphic space group 
p2Jmm. Then we describe a simple modification of 
that construction that yields a non-symmorphic tiling 
with p2Jgm symmetry. These space-group iden- 
tifications are made in § V. 

A. The symmorphic tiling 
Consider an infinite family of parallel lines separ- 

ated by a distance L and normal to the direction n 
(Fig. 3). Next, consider the grid given by superimpos- 
ing D = N/2 such families (in the case of interest for 
us N is a power of 2), all with the same wavelength 
L, whose normals are separated by angles 2~r/N 
(Fig. 4). For appropriate choice of phase in each 
family (for example if all families contain a line 
passing through the origin, or if the origin lies midway 
between two adjacent lines of each family) the result- 
ing grid will have 2Jmm symmetry. However, as will 

be demonstrated in § IV, the constructions to be 
described produce tilings with the desired space 
groups for any choice of these phases. 

A tiling is constructed from the grid as follows: 
pick an arbitrary polygonal cell in the grid and an 
arbitrary point in a second plane, the tiling plane, 
which we shall say corresponds to the cell in the grid. 
Then wander about in the grid. Each time you cross 
a boundary to a new cell, draw a line in the tiling 
plane of length a along the direction of the outward 
normal from the old cell to the new one. That line 
connects the point corresponding to the old cell to 
the point that will correspond to the new cell (Fig. 
5). It is easy to show that the structure you end up 
with, after every side shared by every pair of neighbor- 
ing cells has been crossed at least once, does not 
depend on how you wander through the grid.* This 
will also be evident from the formalization of this 
intuitive procedure described in § IV, which we use 
in § V to show that this construction produces the 
symmorphic tiling p2Jmm. 

B. The non-symmorphic tiling 
A very simple modification in the above procedure 

produces a tiling with the space group p2Jgm. First 
label alternate lines in each family 'odd'  or 'even'. 
Then proceed as before, except that after taking a 
step of length a in the tiling plane along the outward 
normal when crossing the boundary between two 
cells, take a second step of an unrelated length c at 
90 ° to the first.t The second step is to the right or left 
of the first, depending on whether the boundary just 
crossed is a segment of an odd or even labeled line. 
Thus the full steps associated with the lines in each 
family are no longer normal to the lines but alternate 
from one side of the normal to the other (Fig. 6). 

More formal descriptions of these constructions 
will be given in §§ IV and V, together with proofs 
that they have the space-group symmetries claimed 
for them, but first we must specify more precisely 
what is meant by a quasicrystallographic space group. 

III. Quasicrystallographic space groups 

In this section we summarize the definitions and 
results of RWM relevant to the construction of tilings 
with p2Jgm symmetry. We are interested in densities 
of the form 

p(r) = ~ p(k) exp ( ik .  r), (3.1) 

* The resulting tiles are associated with vertices of the grid and 
are rhombi except for those vanishingly few vertices at which more 
than two lines happen to meet. 

t By 'unrelated' we mean that the sum of the two steps for one 
family must not coincide with the sum of the two steps for any 
other family, so that none of the resulting vertices coincide. 
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(b) 

Fig. 1. Quasicrystallographic filings with (a) symmorphic and (b) non-symmorphic space groups for the point group 8mm. 
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where the sum is over all wave vectors in the lattice 
generated by n vectors v ~j) that are linearly indepen- 
dent over the integers, 

k = ~ n.iv ~j). (3.2) 
j = l  

(For plane lattices with 2J-fold symmetry one requires 
2 j-1 such generating vectors.) 

The point group G of a material is the symmetry 
group of all its macroscopic translationally invariant 
equilibrium properties. In particular the diffraction 
pattern, and hence the lattice of wave vectors it gives 
rise to, is invariant under (3, as is the product of any 
group of Fourier coefficients the sum of whose wave 

(a) p4mm (b) p4gm 

Fig. 2. The analogous crystallographic tilings with (a) symmor- 
phic and (b) non-symmorphic space groups for the point 
group 4ram. 

vectors vanishes: 

p ( k ) p ( k ' ) p ( k " )  . . . = p ( g k ) p ( g k ' ) p ( g k " )  . . . 

whenever k + k ' + k " +  . . . = 0 ,  (3.3) 

for all operations g in G. 
Equation (3.3) requires the Fourier coefficients at 

symmetry-related points to be related by 

p(gk) =exp [ 2 7 r i ~ g ( k ) ] p ( k ) ,  (3.4) 

where for each g the 'phase function' ~g(k) must 
satisfy 

• g(k) + ~g(k') + ~g(k")+.. . -=0 

whenever k + k ' + k " + . . . = 0 ,  (3.5) 

where-denotes  equality to within an integer. 
Because of the linearity condition (3.5) it is enough 

to specify the phase functions for the generating 
vectors v (j), j =  1 , . . . ,  n. Furthermore, because 
p[(gh)k] = p [ g ( h k ) ] ,  the phase functions q0g for all 
elements g of the group G must satisfy 

• gh(k)=C19g(hk)+CIgh(k ). (3.6) 

As a result of this relation all the phase functions can 
be determined from those for any subset of the ele- 
ments that generates the entire group. In the case of 
two-dimensional point groups it therefore suffices 
to determine the phase function ~r for a rota- 
tion r through 2 " n ' / N ,  and (if the group possesses 

> n 

L L 

Fig. 3. Three lines from an infinite family with wavelength L and 
normal n. 

J 

" ) a 

/ f e 

Fig. 5. The grid on the left produces the tiling on the right by 
mapping cells (labeled by letters) to corresponding vertices and 
vertices to rhombi as described in § II.A. 

j" 

, , /  

\ / I  

Fig. 4. Part of  an N = 8 grid with randomly chosen phases. 

/'2, 

Fig. 6. The tiling vectors a + c for the non-symmorphic construction 
described in §ll.B. 
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mirrorings) the phase function qb, for any one mirror 
element. 

The possible phase functions fall naturally into 
classes of mutually equivalent functions. This is 
because two densities related by 

p'(k) =exp  [2rrix(k)]p(k) (3.7) 

give the same value for all quantities of the form (3.3) 
and are therefore macroscopically indistinguishable, 
if and only if the difference in phase satisfies the 
condition 

x(k) + x(k') + x(k") + . . . -  0 

whenever k + k ' + k " + . . .  = 0. (3.8) 

Such a linear function is called a 'gauge function'. 
If two densities differ in phase only by such a gauge 

function (in the terminolgy of quasicrystals they then 
differ only by a real-space translation and a phason) 
then the corresponding sets of phase functions are 
said to be equivalent. Equivalent sets of phase func- 
tions are thus related by a 'gauge transformation'  of 
the form 

• g(k) -~g(k)=--x(gk) -x(k) ,  (3.9) 

where the gauge function X is independent of the 
group element g. For the tilings to be discussed here, 
distinct space groups correspond to distinct classes 
of phase functions.* 

For two-dimensional standard lattices RWM show 
th:" all phase functions are equivalent to a set of 
identically zero phase functions (and therefore all 
space groups are symmorphic) except when the point 
group is 2Jmm. In that one case, there can be two 
distinct space groups: the symmorphic space group 
p2~mm, with all phase functions equivalent to zero, 
and the non-symmorphic space group p2Jgm, for 
which the phase function ~r can still be taken to be 
zero with a suitable choice of gauge, but for which 
there is no gauge in which the phase function ~m 
vanishes. The hallmark of the non-symmorphic space 
group is that if m~ is the mirroring that leaves the 
generating vector v <j) invariant, then qb,,,(v (j)) [which 
(3.9) requires to be gauge invariant] satisfies 

~mj(V~J)) -- ½. (3.10) 

In conjunction with (3.4) this leads to extinctions: 
p(k) must vanish for wave vectors that are odd 
multiples of any given generating vectors v <~). 

IV. Tilings and projections: some useful relations 

We now describe a way to characterize a very general 
class of tilings in terms of projections from higher- 

* For our purposes the term 'space group' simply means 
'equivalence class of phase functions'. The term can, however, be 
given a group theoretic interpretation. This is discussed in the 
Appendix. 

dimensional spaces. We shall use this approach in 
§ V to establish that the tilings described in § II do 
indeed have the space-group symmetries claimed for 
them. This way of relating tilings and projections is 
in some respects simpler than those to be found in 
the literature, so we describe it here in a more general 
setting than we shall actually need for the application 
in §V. 

A. Grid wave vectors and tiling vectors 

We are given an arbitrary set of 'grid wave vectors', 

k(J) = 27rn(J)/Lj, j = I , . . . , D ,  (4.1) 
which span a 'grid space' of dimension d < D. Each 
wave vector characterizes a family of d-space hyper- 
planes normal to the direction n C~) and a distance Lj 
apart. Each family is also characterized by a fractional 
displacement 

f j  = dj /  Lj, j = 1 , . . . ,  D, (4.2) 

where d~ (see Fig. 7) is the distance from the origin 
to the nearest hyperplane of the family in the direction 
of - n  ~j~. 

Taken together the families of hyperplanes divide 
the grid space into cells. We assign to each point R 
in the interior of any cell an integer nj which tells 
where it is with respect to the hyperplanes in the j th  
family: 

nj = [(1/27r)k Cj) . R +fj],  (4.3) 

where Ix] is the largest integer less than x. This rule 
assigns the number 0 to points between the same pair 
of hyperplanes as the origin and simply increases the 
number nj by 1 as each hyperplane in the family is 
crossed in the direction of its normal n I j) (de Bruijn, 
1981; G~ihler & Rhyner, 1986). 

We are also given a set of tiling vectors a t:~, 
j = l , . . . ,  D, which span a d-dimensional tiling 
space. The vertices of the tiling consist of all points 
of the form 

D 

nja ~j~ (4.4) 
j = l  

/ -  

d (i) 

> n ~° 

L L 

Fig. 7. The family of Fig. 3 displaced a distance d Ci) from the 
origin (marked with a solid circle). 
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as R in (4.3) ranges through all cells of the grid. When 
the a (j) are arbitrary and entirely unrelated to the k (j) 
we have the case discussed by G/ihler & Rhyner 
(1986). Our intuitive description of the p2~mm tiling 
in § II is equivalent to this more formal description 
if the families of hyperplanes are taken to be the 2 j-~ 
symmetric families of lines in the plane, and the tiling 
vectors are simply the normals to the families: 

a (j)= an (j). (4.5) 

In this section, we shall consider more generally any 
sets of tiling vectors a (j) and grid wave vectors k (j) 
that are related by the condition* 

D 

y. ~(J) l.(J) _ 27r6~,~. (4.6) IA/a. I~'t~ - -  

j = l  

The p U m m  tiling of § II satisfies condition (4.6) if 
we pick the length a to be 2 L / D .  

B. Extension to D dimensions 

Given any set of tiling vectors a ~j) that satisfy (4.6) 
with a set of grid vectors k ~j), we can extend the two 
sets of vectors to mutually orthogonal sets in D 
dimensions. For it follows from (4.6) that if 

d 

~ ~(J)=0, j = l ,  D, (4.7) I.-/at,lt/. t • • . , 

p . = l  

then all the coefficients c, must vanish. This estab- 
lishes that if 

a~-i),. . . , a y  ) (4.8) 

are considered as a set of d vectors in D dimensions 
with components indexed by j = 1 , . . . ,  D, then they 
are linearly independent.  The same argument can be 
made for the set 

k~J) , . . . ,  k~j ). (4.9) 

Now let the D - d  vectors 

q(J) , q~) (4.10) d + l ,  • • • 

span the ( D - d ) - d i m e n s i o n a l  subspace of D-space 
orthogonal to the d-dimensional subspace spanned 
by the set (4.8), so that we have 

D 
~ ( J )  ~ ( J )  u~ ~/~ =0.  (4.11) 

j = l  

Note that in D dimensions the d vectors k ~j) and the 
~(J) constitute a linearly independent D - d  vectors ,t~ 

set, for if 

d D 

" "(J)+ ~ f~q~) (4.12) t~p.t~-/.t 

/ . t = l  / z = d + l  

vanishes for all j, then by multiplying (4.12) by ~(J) u v  , 

summing on j, and appealing to (4.6) and (4.11), one 
establishes that the e, all vanish. The vanishing of 
the f~ as well then follows from the linear indepen- 
dence of the ~(J) in their ( D - d ) - d i m e n s i o n a l  sub- t/tz 
space. 

It follows from this independence that the D x D 
matrix whose j th  row is given by 

k~ j), ky  ), "(J) , q~) (4.13) . . . , t / d + l ,  • . . 

has an inverse; i.e. there are quantities ~(i) and h (j) C/x v / . t  

satisfying 

d D 

~(,)1.(J)+ ~ h(i)a(J)=27rSo. (4.14) 
/ z = l  / x = d + l  

Multiplying both sides of (4.14) by a~ j), summing 
on j, and appealing to (4.6) and (4.11), one establishes 
that 

c(~J) = a(AJ). (4.15) 

It follows from (4.14) and (4.15) that given any 
two sets of D d-dimensional vectors a (;) and k (j) 
satisfying (4.6), there are two additional sets of D 
vectors b (j) and q(J) of dimension D - d, such that the 
two sets of D-vectors A (j) = (a (j), b (j)) and K (j) = (k (j), 
q(J)) constitute mutually orthogonal D-dimensional  
sets: 

A (i) . K (j) = a (i) . k(J) q - b (~) . q(J) = 2zr8 U. (4.16) 

An important consequence of the D-dimensional  
orthonormality condition (4.16) is the D-dimensional  
completeness relation, 

D 

A(J) t4 (J) = 27r6~,~, (4.17) 
j = l  

which contains (4.6) and also gives 

D 

h(J) ~(J) ~ ,  ~ =27r8,~, (4.18) 
j = l  

D 
- - ( J )  ~ ( J )  u~, ~/~ = 0,  ( 4 . 1 9 )  

j = l  

D 

~, h~-i)k ~i) - O. (4.20) 
j = l  

* The advantages of imposing the condition (4.6) on the other- 
wise general grid and tiling vectors considered by G~ihler & Rhyner 
(1986) are the simplicity of the ensuing analysis and the absence 
of any need for a final linear transformation in the tiling plane to 
establish the connection between tilings and projections. We show 
in subsection C below that, given any set of grid vectors (4.1), 
there are always sets of tiling vectors that satisfy (4.6). 

C. Existence o f  tiling vectors for  any set o f  grid vectors 

We note, in passing, that given any set of D grid 
wave vectors k (j), one can always find a (not 
necessarily unique) set of D tiling vectors a (j) that 
satisfy (4.6). To do this note first that because the k (j) 
span the d-dimensional space, no non-zero d-vector 
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can be orthogonal to all of them: if 

d 

" I"°)=0, j =  1, D, (4.21) I.,p,r~,/z . . . , 

p , = l  

then all the coefficients c~, must vanish. If we again 
view the 

k]J),. . . ,k<d ), j = I , . . . , D  (4.22) 

as a set of d vectors in D dimensions, then this 
establishes their linear independence. One can there- 
fore choose D - d  additional D-vectors, 

qO) .. q~), d+~,. , j = I , . . . , D ,  (4.23) 

such that the set 

KO)= (kO), qO)), j = 1 , . . . ,  D, (4.24) 

spans the entire D-dimensional space. One can next 
construct a dual basis A ~j), j = 1 , . . . ,  D for the D- 
space, that satisfies the orthonormality condition 
(4.16). If one expands the A °) into components in 
the d- and (D - d)-dimensional subspaces as the K C j) 
are expanded in (4.24), 

A 0)= (a 0), b°)), j = 1 , . . . ,  D, (4.25) 

then the completeness relation (4.17) gives the 
required relation (4.6) when /~ and v are restricted 
to the first d components. 

D. Tilings and projections 

Suppose now that we have a set of integers of the 
form (4.3); i.e. there is a vector R such that, for 
j = I , . . . , D ,  

n j=(1/21r)k°) .R+f-Aj ,  0 < A j < I .  (4.26) 

If we multiply (4.26) by the ( D -  d)-vector b ~j), sum 
on j, and use the completeness relation (4.20), we 
find that 

D D 

Y'. (n j - f j )b  ° ) = -  ~ Ajb 0), 0<  Aj < 1. (4.27) 
j=l j=l 

Conversely, suppose we have a set of integers nj 
for which (4.27) holds. If we define 

D 

R =  Y~ (nj + a j - f j ) a  °), (4.28) 
j = l  

it then follows from (4.27) and the orthonormality 
condition (4.16) that the nj do indeed satisfy (4.26). 

Consequently a point ~ nja ~j) will be a vertex 
of the tiling if and only if the ( D - d ) - v e c t o r  
Y~ (n j - f j )b  (j) lies in the convex set 

- ~ Ajb °), 0 <  Aj < 1. (4.29) 
j=l 

This analytic result can be given a geometrical 
interpretation by noting that the points of the general 

D-dimensional lattice primitively generated by the 
D-vectors (a (~), b(J)), j = I , . . . , D ,  are points of 
the form 

D 

Y. nj(a °), b C j)) (4.30) 
j = l  

for all integral nj. The points ~ : ~  nja ~jl of the tiling 
are simply the projection into the tiling space of those 
D-dimensional lattice points whose projection 
~=~ n~b ~j) into the perpendicular space lies in the 
intersection of the perpendicular space with the D- 
dimensional unit parallelepiped 

D 

Y'. Aj(a O), b(J)), -1  < A j < 0 ,  (4.31) 
j = l  

shifted by the vector Y~ fib ~j). 

V. The space groups of the tilings 

We now specialize to the case of the two-dimensional 
grid space with the 2 j-~ families of lines described 
in §II. 

A. The symmorphic tiling 

Suppose we position every family of lines so that 
the origin of grid space lies midway between a pair 
of adjacent lines (Fig. 8). The grid will then have 
2Jmm symmetry about the origin, and the tiling will 
have 2Jmm symmetry about the point in tiling space 
that corresponds to the cell containing the origin. If 
the set of vertices of the tiling has 2Jmm symmetry, 
then so must the Fourier coefficients of a sum of 6 
functions at those vertices, so all phase functions are 
zero and the space group is p2Jmm. 

It remains to show that the space group is unaltered 
by any shifts in the position of the families along the 
direction of their normals. We do this by showing 
that such shifts merely alter the Fourier coefficients 
p(k) by a phase that is linear in k - i.e. by a gauge 
function. In reaching this conclusion we shall, for the 
first time, require the order N of the rotational 
symmetry to be 2 ~. 

\ 

: , . /  

\ 

\ / %/> 

? 
% 
< 
J 

Q A  

Fig. 8. Part of an N=8 grid with phases chosen to make it 
symmetric about the origin. 
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The apparatus developed in § IV applies with the 
grid vectors taken to be 

k O)=27rn°)/L, j =  1 , . . . ,  D =  N / 2 ,  (5.1) 

where the n °) are separated by angles of 2rr/N, and 
the tiling vectors are given by 

a O)= an (j) (a = 2 L / D ) .  (5.2) 

Let q~ be the characteristic function of the set (4.29); 
i.e. q~(s)= 1 or 0 depending on whether or not the 
( D - 2 ) - v e c t o r  s is in the set (4.29). Then the sum of 
two-dimensional 6 functions at vertices of the tiling 
has the form 

p ( r )=  . . - E  6 r -  nja O) q~ (nj , 
n o j =  1 "= 

(5.3) 

where all the nj are freely summed over. 
We can cast this into a simple form by using the 

representation 

[ ° ] ~ " "  ~,o 6 (r, s) - j=~l nj(aO)' b(j)) 

:--~-1 ~--'.... ~'. exp [ i ~ nj(k°), r+  qU'. s)] ,  (5.4, 
1.)O n I n o j =  1 

for the sum of D-dimensional 6 functions over all 
points in the D-dimensional lattice that the D inde- 
pendent D-vectors (a (j), b °)) generate primitively. 
(Here vo is the volume of the D-dimensional 
primitive cell of the real-space D-lattice.) 

Using this representation, we can equally well write 
(5.3) as 

p(r) : f ds ~p(s) 

× ~ . . .  ~--'. 6 [ ( r , , , o  s + f ) -  ~-~J=, ni(aU)'b°))l  

(° ) 1 ~ . . . ~  exp i}--', njk u~ r 
I ) D  n D j = 1 

(° ) xexp  i ~ n q ° )  f ~ ° 
j = l  

I ( ° )  x ds exp i ~_, njq (j) . s ~0(s), (5.5) 
j = l  

where 

D 

f =  Z f b(°. (5.6) 
i=1 

This explicitly displays the density as a sum of 
plane waves with wave vectors of the form 

D 

k =  Z nj k(j)- (5.7) 
j = l  

Because D is a power of 2 (and only for such D), 
the 2-vectors k u) for j =  1 , . . . ,  D are integrally 
independent (see RWM or Hardy & Wright, 1979, 
pp. 52-53)-  i.e. the nj appearing in (5.7) are in fact 
single-valued functions of the lattice wave vectors 
and therefore satisfy the linearity condition 

nj(k + k') = nj(k) + n~ (k'). (5.8) 

As a result of this integral independence, any lattice 
wave vector k appears in the Fourier expansion (5.5) 
for only a single term in the sums over n~ , . . . ,  no, 
and the dependence of the Fourier coefficient p(k) 
on the shifts fj of the grid lines is entirely through 
the phase factor exp [27rix(k)], where 

D 

27rx(k)=f .  ~ nj(k)q (j). (5.9) 
j = l  

Since the nj(k) are linear in k and since x(k) is 
linear in the nj(k), it follows that x(k) is itself linear 
in k -  i.e. it is a gauge function in the sense of §II I .  
This establishes that the space group is indeed 
independent of the shifts fj in position of the grids. 

B. The non-symmorphic tiling 

The vertices of the non-symmorphic tiling 
described in § I I can evidently be described more 
formally as follows: take each vertex (4.4) that 
appears in the symmorphic tiling, and give it an 
additional shift by 

D 

Y. pjc <j) (5.10) 
j = l  

where c °) is a displacement of length c at 90 ° to the 
right of the displacement a °), and pj is the parity of 
the integer nj, being 0 or 1 depending on whether nj 
is even or odd. 

To investigate the Fourier transform of a sum of 6 
functions at the resulting set of points, we resolve the 
entire tiling T into 2 ° subtilings, Tp,...po , associated 
with the 2 ° different parities of the n l , . . . ,  no. 
Vertices of the subtiling Tp,...p o have the form 

D D 

nja°)+ ~ pjc O), (5.11) 
j = l  j = l  

where the integers n~ are those integers (4.26) of 
the form nj = 2mj+pj. Thus vertices of the subtiling 
Tp...po are the points of the form 

D O 

2 ~ rnja°)+ ~ pj(a°)+c°)) ,  (5.12) 
j = l  j = l  

where the m s are those integers for which there is a 
vector R in grid space satisfying 

2 m j = ( 1 / 2 r r ) k U ) . R + f j - p j - A j ,  0 < A j < I .  (5.13) 

Equations (5.12) and (5.13) reveal that the subtiling 
Tp,...po is obtained from the subtiling T0...o by shifting 
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it in tiling space by ~o=~ pj(aO)+ cO)) and by shifting 
each f~ by -p~, i.e. shifting f [(5.6)] by -p ,  where 

D 

p b °) (5.14) P = E  ~ • 
j = l  

Now the subtiling To...o, like the symmorphic tiling, 
can be given 2Jmm symmetry with a suitable choice 
of the grid displacements f~. (Arrange for the origin 
of grid space again to lie at the center of the 0 . . .  0 
cell in grid space, and note that To...o is then just a 
subset of the similarly symmetrized version of the 
symmorphic tiling, selected from it by an explicitly 
symmetric rule.) Consequently, as in the symmorphic 
case, the Fourier coefficients of Po...o, the sum of 
functions at the vertices of a To...o tiling from a grid 
with general displacements f ,  differ by only a linear 
gauge function from a set of Fourier coefficients with 
zero phase functions. 

To exploit this fact we first show that the Fourier 
coefficients of the non-symmorphic tiling p(k) are 
simply proportional to those of po...o: 

p(k) = S(k)po...o(k). (5.15) 

Since the phase functions of po...o(k) differ from zero 
only by a gauge function, the phase functions of p(k) 
will differ from those of S(k) only by a gauge transfor- 
mation [(3.7)]. By explicitly computing S(k) we can 
therefore determine the space-group symmetry of the 
non-symmorphic tiling. 

First, following the same lines we pursued in the 
symmorphic case, we express the density of vertices 
in the subtiling To...o in a form similar to the expression 
(5.3) for the symmorphic tiling: 

po...o(r)=E... E 8(r-2 ~ mja °))  
m I m o j = 1 

(5.16) 

Again using the representation (5.4) of the 8 function, 
we can recast this in the form 

;o...o(r) = f ds ,p(s) 

[ ° ] mj(.% b 
m I m D j = 1 

--2D dsq~(s) 

° ] m,(.%b 
m t m D j =  1 

(° ) 1 ~ - , . . . ~  exp i½ ~ njk(J).r 
- -  2 D 1 ) D  n~ n D j =  1 

(° ) xexp i ½ ~ n . q  (j) f 
j = l  

I ( o ) x ds~o(s) exp i ½ ~  n.q (j) . s . (5.17) 
j = l  

Note (in contrast to the symmorphic case) that the 
wave vectors in the Fourier expansion can now have 
either integral or half-inte~gral coefficients when 
expanded in terms of the k ~j). The lattice of wave 
vectors is therefore generated by the set v C j)= ½k C j), 
j - -  1 , . . . ,  D, and any wave vector in the lattice has 
the expansion 

D 

k =  ~ nj(k)½k (j). (5.18) 
j = l  

In view of the simple relation between the subtilings 
Tp,...po and To...o revealed by (5.12) and (5.13) and (as 
earlier) in view of the integral independence of 
k(1).., k (D), it follows from (5.17) that the Fourier 
coefficients pp,...po(k) and po...o(k) are related by 

ppv..pD(k)=exp [ - i k .  ~ pj(a(J)+c ~j~) 
j = l  

-i½p. ~ nj(k)q ] (5.19) po...o(k). ~j~ 
j = l  

Using the orthonormality condition (4.16), the 
definition (5.14) of p, and the expansion (5.18) of k, 
we can simplify (5.19) to 

ppv..pD (k ) : (--1)E?:~ pj,/k) 

( o ) 
( j )  

x exp - i k .  Y~ pie po...o(k). (5.20) 
j = l  

Now the density p (k) of the entire non-symmorphic 
tiling is just the sum of the densities of the 2 ° sub- 
tilings corresponding to all possible choices of 0 or 
1 for the D parities pj. Thus 

D 

p(k)=  H [1 -I- ( - -1 )  n'Ck) exp ( - i k .  ctJ))]po...o(k ). 
j = l  

(5.21) 

This establishes (5.15), with the structure factor 

D 

S(k )=  I-I [ 1 + ( - 1 )  "/k) e x p ( - i k . c ° ) ) ]  • (5.22) 
j = l  

When the additional displacements c °) are zero so 
the tiling reduces back to the symmorphic one, the 
structure factor vanishes except when all the nj(k) 
are even, and the enriched lattice (5.18) indeed 
reduces back to the lattice of the symmorphic tiling. 

Note next that when k is a multiple of a single 
• _ 1  _ t-(Jo) generating vector, k = njo v(jo)- ~njoK , then the term 
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in the product (5.22) with j =jo vanishes for odd njo, 
since each c (j) is orthogonal to the corresponding k <j). 
The non-symmorphic lattice therefore has precisely 
the extinctions noted in § III as characteristic of 
p2-igm symmetry. 

To confirm that the tiling does indeed have point- 
group symmetry 2Jmm we must show that the phase 
functions q~r(k) and q~,, (k) associated with a rotation 
r and a mirroring m are indeed linear in k. In addition, 
to be sure that the extinctions are not accidental 
extinctions in a structure with space group p2imm, 
we must show that the phase function q~,,(k) satisfies 
(3.10). 

Let the mirroring m be about ko. It is evident 
(Fig. 9) that if k0 is defined to be - k o ,  then 

rnk (j) = - k  (D-j) ,  nj(mk) = -no_j(k), 

and 

j= 1,. . . ,  D, (5.23) 

mk (j) . c (~) = - k  (D-j) . c (° = k (j) . c (°-i),  (5.24) 

with the conventions 

e (°) = - c  (°), n0(k) = - n o ( k ) .  (5.25) 

It follows that 

D 
S(mk)  = I-[ [1 + ( - 1 )  "°-/k) exp ( - i k .  c<°-J))]. 

j = l  
(5.26) 

Changing the product index from j to D - j ,  we get 
back (5.22) with a different set of limits: 

D--1 
S ( m k ) =  1-I [ 1 + ( - 1 )  ~<k) e x p ( - i k - e ( j ) ) ]  (5.27) 

j=0  

o r  

1 + (--1) n°(k) exp ( - i k .  e (°)) 
S ( m k ) -  

1 + ( - 1) n°(k) exp ( - i k .  c (°)) 

D 
× I-[ [1 + ( - 1) 5(k) exp ( - i k .  c(J))]. 

j = l  
(5.28) 

k(2)= r k  (1) 

k (3) k (1) 

k (4) ( ) k(°)=-k (4) 

mk O) 

Fig. 9. Mirrorings (m) and rotations (r) of the generating vectors 
for D= N/2=4. Note that c <j) points perpendicularly and 
counter-clockwise with respect to k (~). See equations (5.23) and 
(5.24). 

We conclude [see (5.25)] that 

S ( m k ) = ( - 1 )  "o(k) exp(ik.c(D))S(k). (5.29) 

By the definition (3.4) of the phase functions, we 
also have, to within a gauge transformation, that 

S(mk)  = e x p  [27ri~,,(k)]S(k).  (5.30) 

To establish that the vanishing of the structure factor 
at the extinguished points is not an accident, we must 
show that ~m(½k (o))  ~- ½. Although nD(½k (°)) = 1, and 
k (°) . c (°) = 0, we cannot infer this immediately from 
(5.29) and (5.30) because the structure factor S 
vanishes at ½k (°). We can, however, infer that at all 
points with non-zero structure factors, the phase 
function is given by 

~,,(k)=½nD(k)+(1/2"rr)k.c (°), (5.31) 

and this is all we require, because the phase function 
at points of vanishing structure factor is defined to 
be the linear extension of the diffraction pattern phase 
function to those points. Since (5.31) is explicitly 

- ½k ( ° )  to linear in k, it can be applied directly to k - -  
give the required result. 

Finally, we must establish that the phase function 
q~r(k) is linear, where r is a rotation through 2~r/N. 
For such a rotation (see Fig. 9) 

nj(rk) = nj_l(k) (5.32) 

and 

rk .  c (j) = k .  c (j-l), (5.33) 

again with the convention (5.25) for c ~°) and no(k). 
This, however, immediately gives 

D 
S(rk)  = 1-I [1 + ( - - 1 )  nj-'(k) e x p  ( - i k .  c(J-1))]  

j = l  

D - 1  

= 1-I [ 1 + ( - 1 )  "/k) exp( - ik . e (~ ) ) ]  • (5.34) 
j=O 

Since this is the same* as the expression (5.27) for 
S(mk),  the same argument that established the 
linearity of  (/)re(k) establishes the linearity of (/)r(k). 

A P P E N D I X  

Throughout this paper'  it is unnecessary to take the 
term 'space group' to mean anything more than an 
equivalence class of phase functions. The quasi- 
crystallographic space groups can, however, be given 
the algebraic structure of a group as follows: 

(a) Take n vectors v (i) that generate the lattice, in 
the sense that all lattice vectors k are integral linear 
combinations of the v (°. Depending on circumstances, 

* This simplification is a consequence of the particular mirror 
we chose to examine, but the conclusion, of course, does not 
depend on this choice. 
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one may take a generating set with the smallest pos- 
sible value of n or prefer a set with larger n if it is 
more symmetric. Different choices of n will lead to 
different abstract groups. 

(b) The n vectors v Ci) give a representation of the 
point group by n-dimensional matrices (of integers): 

gv (i) = ~ v~J) DJi(g). ( A.1) 

(c) Because the phase functions are linear to within 
additive integers, it is enough to specify their values 
at the n generating vectors. For each point-group 
operation g these values constitute an n-vector ~g 
with components 

~(i)= ~g (v(i)). (A.2) g 

(d) Because each component of a given phase- 
function vector ~g is determined only to within an 
additive integer, ~g can be represented by any mem- 
ber of the entire n-dimensional set Sg of vectors whose 
components differ from those of ~g by integers. 

(e) Given any two representatives ~g and q~h from 
Sg and Sh, it follows from (3.6) that a vector from 
Sg h is given by 

~gh = ~gD( h ) + ~h. ( A.3 ) 

( f )  Elements of the space group consist of ordered 
pairs (g, ~g), (g, ~g), (g, ~ ) , . . .  where g is any 
point-group element and qbg, ~g,  ~ g , . . .  are all the 

vectors in Sg. The combination law for two such pairs 
is the semidirect product 

(g, qog)(h, Cbh)=(gh, qbgD(h) + ~h). (3.4) 
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Abstract 
The name SAPI is an abbreviation of'structure analy- 
sis programs with intelligent control'. It may also be 
read inversely as 'Institute of Physics, Academia 
Sinica'. SAPI is based on MULTANSO, but differs 
from it by a number of features. These will be 
described in a series of papers. The present paper 
describes an algorithm which can distinguish super- 
structures from ordinary structures by automatically 
discovering the pseudo-systematic extinction rule in 

0108-7673/88/050688-04503.00 

reciprocal space. This algorithm enables SAPI to 
handle superstructures in a fully automatic way, 
leading to a complete solution in favourable cases. 

Introduction 
Superstructures are distinguished by their pseudo- 
translational symmetry, which leads to the effect of 
pseudo-systematic extinction, i.e. there exists two 
classes of reflections, one systematically strong, the 
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